Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Meteorological influences on stemflow generation across diameter size classes of two morphologically distinct deciduous species.

Identifieur interne : 002138 ( Main/Exploration ); précédent : 002137; suivant : 002139

Meteorological influences on stemflow generation across diameter size classes of two morphologically distinct deciduous species.

Auteurs : John T. Van Stan [États-Unis] ; Jarrad H. Van Stan ; Delphis F. Levia

Source :

RBID : pubmed:24615637

Descripteurs français

English descriptors

Abstract

Many tree species have been shown to funnel substantial rainfall to their stem base as stemflow flux, given a favorable stand structure and storm conditions. As stemflow is a spatially concentrated flux, prior studies have shown its impact on ecohydrological and biogeochemical processes can be significant. Less work has been performed examining stemflow variability from meteorological conditions compared to canopy structural traits. As such, this study performs multiple regressions: (1) to examine stemflow variability due to event-based rainfall amount, intensity, mean wind speeds, and vapor pressure deficit; (2) across three diameter size classes (10-20, 21-40, and >41 cm DBH); and (3) for two common tree species in the northeastern USA of contrasting canopy morphology--Liriodendron tulipifera L. (yellow poplar) versus Fagus grandifolia Ehrh. (American beech). On the whole, multiple regression results yielded significant positive correlations with stemflow for rainfall amount, intensity, and mean wind speed and a significant negative correlation for vapor pressure deficit (VPD). Tree size altered stemflow-meteorological condition relationships, where larger trees strengthened indirect stemflow-VPD and direct stemflow-rainfall and stemflow-intensity associations. Canopies of rougher bark and lower branch angle (represented by L. tulipifera) enhanced correlations for nearly all meteorological conditions via greater stemflow residence time (and longer exposure to meteorological conditions). Multiple regressions performed on leafless canopy stemflow resulted in an inverse relationship with wind speeds, likely decoupling stemflow sheltered solely on bark surfaces from VPD influences. Leaf presence generally increased direct stemflow associations with rainfall intensity, yet diminished stemflow-rainfall relationships. F. grandifolia canopies (exemplifying structures of smoother bark and greater branch angle) strengthened differences in stemflow associations with rainfall/mean wind speed between leaf states. These findings are placed in a conceptual interception loss path analysis, which shows the potential to alter common interception loss estimates in high stemflow stands.

DOI: 10.1007/s00484-014-0807-7
PubMed: 24615637


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Meteorological influences on stemflow generation across diameter size classes of two morphologically distinct deciduous species.</title>
<author>
<name sortKey="Van Stan, John T" sort="Van Stan, John T" uniqKey="Van Stan J" first="John T" last="Van Stan">John T. Van Stan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Geology and Geography, Georgia Southern University, Statesboro, GA, 30640, USA, jvanstan@georgiasouthern.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Geology and Geography, Georgia Southern University, Statesboro, GA, 30640, USA</wicri:regionArea>
<wicri:noRegion>USA</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Van Stan, Jarrad H" sort="Van Stan, Jarrad H" uniqKey="Van Stan J" first="Jarrad H" last="Van Stan">Jarrad H. Van Stan</name>
</author>
<author>
<name sortKey="Levia, Delphis F" sort="Levia, Delphis F" uniqKey="Levia D" first="Delphis F" last="Levia">Delphis F. Levia</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24615637</idno>
<idno type="pmid">24615637</idno>
<idno type="doi">10.1007/s00484-014-0807-7</idno>
<idno type="wicri:Area/Main/Corpus">002274</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002274</idno>
<idno type="wicri:Area/Main/Curation">002274</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002274</idno>
<idno type="wicri:Area/Main/Exploration">002274</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Meteorological influences on stemflow generation across diameter size classes of two morphologically distinct deciduous species.</title>
<author>
<name sortKey="Van Stan, John T" sort="Van Stan, John T" uniqKey="Van Stan J" first="John T" last="Van Stan">John T. Van Stan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Geology and Geography, Georgia Southern University, Statesboro, GA, 30640, USA, jvanstan@georgiasouthern.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Geology and Geography, Georgia Southern University, Statesboro, GA, 30640, USA</wicri:regionArea>
<wicri:noRegion>USA</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Van Stan, Jarrad H" sort="Van Stan, Jarrad H" uniqKey="Van Stan J" first="Jarrad H" last="Van Stan">Jarrad H. Van Stan</name>
</author>
<author>
<name sortKey="Levia, Delphis F" sort="Levia, Delphis F" uniqKey="Levia D" first="Delphis F" last="Levia">Delphis F. Levia</name>
</author>
</analytic>
<series>
<title level="j">International journal of biometeorology</title>
<idno type="eISSN">1432-1254</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Fagus (anatomy & histology)</term>
<term>Fagus (physiology)</term>
<term>Liriodendron (anatomy & histology)</term>
<term>Liriodendron (physiology)</term>
<term>Plant Leaves (MeSH)</term>
<term>Plant Stems (anatomy & histology)</term>
<term>Plant Stems (physiology)</term>
<term>Rain (MeSH)</term>
<term>Regression Analysis (MeSH)</term>
<term>Wind (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de régression (MeSH)</term>
<term>Fagus (anatomie et histologie)</term>
<term>Fagus (physiologie)</term>
<term>Feuilles de plante (MeSH)</term>
<term>Liriodendron (anatomie et histologie)</term>
<term>Liriodendron (physiologie)</term>
<term>Pluie (MeSH)</term>
<term>Tiges de plante (anatomie et histologie)</term>
<term>Tiges de plante (physiologie)</term>
<term>Vent (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomie et histologie" xml:lang="fr">
<term>Fagus</term>
<term>Liriodendron</term>
<term>Tiges de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomy & histology" xml:lang="en">
<term>Fagus</term>
<term>Liriodendron</term>
<term>Plant Stems</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Fagus</term>
<term>Liriodendron</term>
<term>Tiges de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Fagus</term>
<term>Liriodendron</term>
<term>Plant Stems</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Plant Leaves</term>
<term>Rain</term>
<term>Regression Analysis</term>
<term>Wind</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de régression</term>
<term>Feuilles de plante</term>
<term>Pluie</term>
<term>Vent</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Many tree species have been shown to funnel substantial rainfall to their stem base as stemflow flux, given a favorable stand structure and storm conditions. As stemflow is a spatially concentrated flux, prior studies have shown its impact on ecohydrological and biogeochemical processes can be significant. Less work has been performed examining stemflow variability from meteorological conditions compared to canopy structural traits. As such, this study performs multiple regressions: (1) to examine stemflow variability due to event-based rainfall amount, intensity, mean wind speeds, and vapor pressure deficit; (2) across three diameter size classes (10-20, 21-40, and >41 cm DBH); and (3) for two common tree species in the northeastern USA of contrasting canopy morphology--Liriodendron tulipifera L. (yellow poplar) versus Fagus grandifolia Ehrh. (American beech). On the whole, multiple regression results yielded significant positive correlations with stemflow for rainfall amount, intensity, and mean wind speed and a significant negative correlation for vapor pressure deficit (VPD). Tree size altered stemflow-meteorological condition relationships, where larger trees strengthened indirect stemflow-VPD and direct stemflow-rainfall and stemflow-intensity associations. Canopies of rougher bark and lower branch angle (represented by L. tulipifera) enhanced correlations for nearly all meteorological conditions via greater stemflow residence time (and longer exposure to meteorological conditions). Multiple regressions performed on leafless canopy stemflow resulted in an inverse relationship with wind speeds, likely decoupling stemflow sheltered solely on bark surfaces from VPD influences. Leaf presence generally increased direct stemflow associations with rainfall intensity, yet diminished stemflow-rainfall relationships. F. grandifolia canopies (exemplifying structures of smoother bark and greater branch angle) strengthened differences in stemflow associations with rainfall/mean wind speed between leaf states. These findings are placed in a conceptual interception loss path analysis, which shows the potential to alter common interception loss estimates in high stemflow stands.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24615637</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>08</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1254</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>58</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2014</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>International journal of biometeorology</Title>
<ISOAbbreviation>Int J Biometeorol</ISOAbbreviation>
</Journal>
<ArticleTitle>Meteorological influences on stemflow generation across diameter size classes of two morphologically distinct deciduous species.</ArticleTitle>
<Pagination>
<MedlinePgn>2059-69</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00484-014-0807-7</ELocationID>
<Abstract>
<AbstractText>Many tree species have been shown to funnel substantial rainfall to their stem base as stemflow flux, given a favorable stand structure and storm conditions. As stemflow is a spatially concentrated flux, prior studies have shown its impact on ecohydrological and biogeochemical processes can be significant. Less work has been performed examining stemflow variability from meteorological conditions compared to canopy structural traits. As such, this study performs multiple regressions: (1) to examine stemflow variability due to event-based rainfall amount, intensity, mean wind speeds, and vapor pressure deficit; (2) across three diameter size classes (10-20, 21-40, and >41 cm DBH); and (3) for two common tree species in the northeastern USA of contrasting canopy morphology--Liriodendron tulipifera L. (yellow poplar) versus Fagus grandifolia Ehrh. (American beech). On the whole, multiple regression results yielded significant positive correlations with stemflow for rainfall amount, intensity, and mean wind speed and a significant negative correlation for vapor pressure deficit (VPD). Tree size altered stemflow-meteorological condition relationships, where larger trees strengthened indirect stemflow-VPD and direct stemflow-rainfall and stemflow-intensity associations. Canopies of rougher bark and lower branch angle (represented by L. tulipifera) enhanced correlations for nearly all meteorological conditions via greater stemflow residence time (and longer exposure to meteorological conditions). Multiple regressions performed on leafless canopy stemflow resulted in an inverse relationship with wind speeds, likely decoupling stemflow sheltered solely on bark surfaces from VPD influences. Leaf presence generally increased direct stemflow associations with rainfall intensity, yet diminished stemflow-rainfall relationships. F. grandifolia canopies (exemplifying structures of smoother bark and greater branch angle) strengthened differences in stemflow associations with rainfall/mean wind speed between leaf states. These findings are placed in a conceptual interception loss path analysis, which shows the potential to alter common interception loss estimates in high stemflow stands.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Van Stan</LastName>
<ForeName>John T</ForeName>
<Initials>JT</Initials>
<Suffix>2nd</Suffix>
<AffiliationInfo>
<Affiliation>Department of Geology and Geography, Georgia Southern University, Statesboro, GA, 30640, USA, jvanstan@georgiasouthern.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Van Stan</LastName>
<ForeName>Jarrad H</ForeName>
<Initials>JH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Levia</LastName>
<ForeName>Delphis F</ForeName>
<Initials>DF</Initials>
<Suffix>Jr</Suffix>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>03</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Int J Biometeorol</MedlineTA>
<NlmUniqueID>0374716</NlmUniqueID>
<ISSNLinking>0020-7128</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D029964" MajorTopicYN="Y">Fagus</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D031567" MajorTopicYN="Y">Liriodendron</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018547" MajorTopicYN="N">Plant Stems</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="Y">anatomy & histology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011891" MajorTopicYN="N">Rain</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012044" MajorTopicYN="N">Regression Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014919" MajorTopicYN="N">Wind</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>11</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>02</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2014</Year>
<Month>02</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>3</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>3</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>8</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24615637</ArticleId>
<ArticleId IdType="doi">10.1007/s00484-014-0807-7</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Oecologia. 1984 Jun;62(3):337-343</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28310886</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Levia, Delphis F" sort="Levia, Delphis F" uniqKey="Levia D" first="Delphis F" last="Levia">Delphis F. Levia</name>
<name sortKey="Van Stan, Jarrad H" sort="Van Stan, Jarrad H" uniqKey="Van Stan J" first="Jarrad H" last="Van Stan">Jarrad H. Van Stan</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Van Stan, John T" sort="Van Stan, John T" uniqKey="Van Stan J" first="John T" last="Van Stan">John T. Van Stan</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002138 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002138 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24615637
   |texte=   Meteorological influences on stemflow generation across diameter size classes of two morphologically distinct deciduous species.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24615637" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020